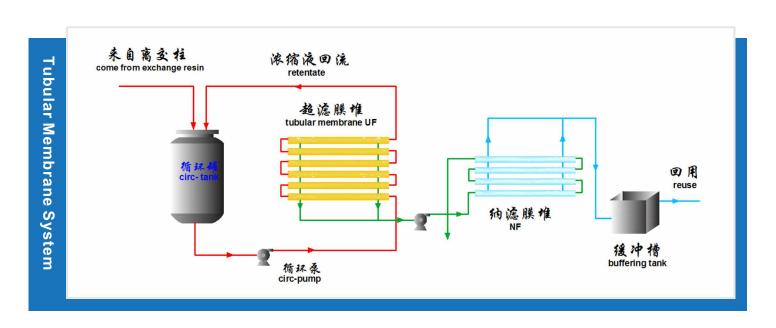


Waste Alkali Recovery in Ion Exchange Process

Overview

Alkali helps to clean the ion exchange resins in order to be reused in IE process, these alkali turns into waste after work. "Organic Tubular Membrane + NF membrane" systems can purify and recover the waste alkali.


Organic tubular membrane system can remove the SS particles and small molecule impurities of the waste alkali, secures NF system to have a desired flux, longer lifecycle. Then the permeate flows into NF system.

The system adopts KAIMI's braced membrane module, pH range tolerance 0-14, Max NaOH tolerance is 25%.

Project Brief

Project Location	Hebei, China
Treatment Capacity	1,600m³/D
Started at	August of 2010
Membrane Model	KMTC-D-SD-0512
Specification	12.5mm PES, E30 TM
Membrane Type	Braced Membrane Module with 37 Channels
Membrane Flux	65LMH
Membrane Per Set	48pcs
Component Distribution	4×12/Set; total 5 sets
Treatment Capacity Per Set	16m³/H

Project Overview

Waste Alkali Recovery in Ion Exchange Process

Process Chracteristics

- O Alkali concentration: 2 4%.
- Transmittance of mixed samples after treatment ≥90%(measured about 470nm).
- O Color of recovery alkali: colorless and clear (meet the recovery requirement).
- O Tubular membrane system's recycle rate >90%; NF system's recycle rate is 83%.

Economic Benifits

Annually Savable Solid Alkali		
Alkali Concentration	2% - 4%	
Recovery Alkali	1600m³/day*90%*83%= 1195.2m³/day	
Savable Alkali	1195.2m³/day*3%= 35.86m³/day	
Savable Solid Alkali	35.86m³/day*1800RMB* 300day=19,364,400RMB/year	
Annually Water Save		
Water Saving	1195.2m³/day*97%= 1159.3 m³/day	
Value of Waste Saving	1159.3m³/day*3RMB*300days= 1,043,400 RMB/year	
Annually Cost Save: 20,407,800 RMB		

Equipment		
UF & NF Equipment	15,000,000 RMB	
Power Consumption		
UF Equip Power	310KW	
NF Equip Power	262KW	
Electricity Cost	572KW*20h*1RMB* 300days=3,432,000RMB	
Wages =450,000 RMB (3 shifts, 3 workers /each shift)		
TOTAL: 13,882,000 RMB		

The UF-NF systems help to get the repay of the investment in one year, also recover a large amount of NaOH and water. It optimizes resources allocation, makes benefits to environment and society.

Jiangsu Kaimi Membrane Technology Co., Ltd

